TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections
 
Options

Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections

Publikationstyp
Conference Paper
Date Issued
2016-07-13
Sprache
English
Author(s)
Liebig, Wilfried  orcid-logo
Schulte, Karl  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/3035
Journal
Philosophical transactions of the Royal Society A: Mathematical,physical and engineering sciences  
Volume
374
Issue
2071
Start Page
Art.-Nr. 20150279
Citation
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2071 (374): 20150279 (2016-07-13)
Contribution to Conference
22 to a Theo Murphy meeting
Publisher DOI
10.1098/rsta.2015.0279
Scopus ID
2-s2.0-84973092238
Publisher
Royal Society
The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex threedimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre-matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the mesoscale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.
DDC Class
600: Technik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback