TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. SLC: Memory Access Granularity Aware Selective Lossy Compression for GPUs
 
Options

SLC: Memory Access Granularity Aware Selective Lossy Compression for GPUs

Publikationstyp
Conference Paper
Date Issued
2019-03
Sprache
English
Author(s)
Lal, Sohan  
Lucas, Jan  
Juurlink, Ben H. H.  
TORE-URI
http://hdl.handle.net/11420/12250
Start Page
1184
End Page
1189
Article Number
8714810
Citation
22nd Design, Automation and Test in Europe Conference and Exhibition (DATE 2019)
Contribution to Conference
22nd Design, Automation and Test in Europe Conference and Exhibition, DATE 2019  
Publisher DOI
10.23919/DATE.2019.8714810
Scopus ID
2-s2.0-85066619609
Memory compression is a promising approach for reducing memory bandwidth requirements and increasing performance, however, memory compression techniques often result in a low effective compression ratio due to large memory access granularity (MAG) exhibited by GPUs. Our analysis of the distribution of compressed blocks shows that a significant percentage of blocks are compressed to a size that is only a few bytes above a multiple of MAG, but a whole burst is fetched from memory. These few extra bytes significantly reduce the compression ratio and the performance gain that otherwise could result from a higher raw compression ratio. To increase the effective compression ratio, we propose a novel MAG aware Selective Lossy Compression (SLC) technique for GPUs. The key idea of SLC is that when lossless compression yields a compressed size with few bytes above a multiple of MAG, we approximate these extra bytes such that the compressed size is a multiple of MAG. This way, SLC mostly retains the quality of a lossless compression and occasionally trades small accuracy for higher performance. We show a speedup of up to 35% normalized to a state-of-the-art lossless compression technique with a low loss in accuracy. Furthermore, average energy consumption and energy-delay-product are reduced by 8.3% and 17.5%, respectively.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback