TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. (Hessenberg) eigenvalue-eigenmatrix relations
 
Options

(Hessenberg) eigenvalue-eigenmatrix relations

Citation Link: https://doi.org/10.15480/882.99
Publikationstyp
Preprint
Date Issued
2004-09
Sprache
English
Author(s)
Zemke, Jens-Peter M.  orcid-logo
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.99
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/101
First published in
Preprints des Institutes für Mathematik;Bericht 78
Preprints des Institutes für Mathematik  
Number in series
78
Citation
Preprint. Published in: Linear Algebra and its ApplicationsVolume 414, Issues 2–3, 15 April 2006, Pages 589-606
Publisher DOI
10.1016/j.laa.2005.11.002
Scopus ID
2-s2.0-33644855477
Explicit relations between eigenvalues, eigenmatrix entries and matrix elements are derived. First, a general, theoretical result based on the Taylor expansion of the adjugate of zI - A on the one hand and explicit knowledge of the Jordan decomposition on the other hand is proven. This result forms the basis for several, more practical and enlightening results tailored to non-derogatory, diagonalizable and normal matrices, respectively. Finally, inherent properties of (upper) Hessenberg, resp. tridiagonal matrix structure are utilized to construct computable relations between eigenvalues, eigenvector components, eigenvalues of principal submatrices and products of lower diagonal elements.
Subjects
Algebraic eigenvalue problem
eigenvalue-eigenmatrix relations
Jordan normal form
adjugate
principal submatrices
DDC Class
510: Mathematik
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

rep78.pdf

Size

355.84 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback