TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Investigation of metal wire mesh as support material for dieless forming of woven reinforcement textiles
 
Options

Investigation of metal wire mesh as support material for dieless forming of woven reinforcement textiles

Citation Link: https://doi.org/10.15480/882.8720
Publikationstyp
Journal Article
Date Issued
2023-10-11
Sprache
English
Author(s)
Rath, Jan-Erik  orcid-logo
Flugzeug-Produktionstechnik M-23  
Schüppstuhl, Thorsten  orcid-logo
Flugzeug-Produktionstechnik M-23  
TORE-DOI
10.15480/882.8720
TORE-URI
https://hdl.handle.net/11420/43686
Journal
Journal of manufacturing and materials processing  
Volume
7
Issue
5
Article Number
182
Citation
Journal of manufacturing and materials processing 7 (5): 182 (2023)
Publisher DOI
10.3390/jmmp7050182
Scopus ID
2-s2.0-85175251304
Publisher
MDPI
ISSN
2504-4494
Peer Reviewed
true
Within the rapidly growing market for fiber-reinforced plastics (FRPs), conventional production processes involving molds are not cost-efficient for prototype and small series production. Therefore, new flexible forming techniques are increasingly being researched, many of which have been inspired by incremental sheet metal forming (ISF). Due to the different deformation mechanisms of woven reinforcement fibers and metal sheets, ISF is not directly applicable to FRP. Instead, shear and bending of the fibers need to be realized. Therefore, a new dieless forming process for the production of FRP supported by metal wire mesh as an auxiliary material is proposed. Two standard tools, such as hemispherical punches, are used to locally bend a reversible layup of metal wire mesh and woven reinforcement fiber fabric enclosed in a vacuum bag. Therefore, the mesh aids in introducing shear into the material due to its ability to transmit compressive in-plane forces, and it ensures that the otherwise flexible fabric maintains the intended deformation until the part is cured or solidified. Basic experiments are conducted using thermoset prepreg, woven commingled yarn fabric, and thermoplastic organo sheets, proving the feasibility of the approach.
Subjects
Fiber-reinforced plastic
Free forming
Incremental sheet forming
Dieless forming
Composite
Metal wire mesh
DDC Class
620: Engineering
Funding(s)
Entwicklung eines Prozesses zur inkrementellen, formwerkzeuglosen Umformung faserverstärkter Halbzeuge, sowie Umsetzung einer digitalen Prozesskette zur Planung- und Steuerung  
Funding Organisations
Bundesministerium für Wirtschaft und Klimaschutz (BMWK)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

jmmp-07-00182(1).pdf

Type

Main Article

Size

5.46 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback