TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Method of activation energy analysis and application to individual cells of 256Mb DRAM in 110 nm technology
 
Options

Method of activation energy analysis and application to individual cells of 256Mb DRAM in 110 nm technology

Publikationstyp
Journal Article
Date Issued
2006-04-01
Sprache
English
Author(s)
Weber, Andreas  
Birner, Albert  
Krautschneider, Wolfgang  
Nano- und Medizinelektronik E-9 (H)  
TORE-URI
https://hdl.handle.net/11420/48120
Journal
Solid state electronics  
Volume
50
Issue
4
Start Page
613
End Page
619
Citation
Solid-State Electronics 50 (4): 613-619 (2006)
Publisher DOI
10.1016/j.sse.2006.03.024
Scopus ID
2-s2.0-33646497628
Publisher
Elsevier B.V.
In DRAM every memory cell experiences an individual mixture of leakage currents which consume part of the stored charge and lead to a wide distribution of data retention time (tRet). This distribution consists of an intrinsic (main) and an extrinsic (tail) branch. In this work, the method of activation energy analysis on individual cells is introduced for retention tail characterization and explained in detail. The formalism of activation energies (Ea) provides information about the mechanisms involved. Activation energies of single cells in a 256M DDR memory chip and their dependence on negative gate bias (VNWLL) as well as body bias (VBB) have been investigated intensively for the first time. Worst tail cells - all within a small retention time interval - show a twofold and wide distribution of activation energies. The lower Ea distribution can be altered with VNWLL, whereas the higher Ea distribution only alters with VBB. Going from tail towards main distribution, the percentage of cells belonging to the low Ea part continuously decreases and finally disappears. We therefore conclude that a gate induced mechanism (GIDL) is the main component responsible for DRAM retention tail.
DDC Class
621.3: Electrical Engineering, Electronic Engineering
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback