TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Adjoint-assisted robust shape optimization of an idealized arterial bypass graft using the FOSM method
 
Options

Adjoint-assisted robust shape optimization of an idealized arterial bypass graft using the FOSM method

Citation Link: https://doi.org/10.15480/882.15364
Publikationstyp
Journal Article
Date Issued
2025-06-01
Sprache
English
Author(s)
Bletsos, Georgios  
Fluiddynamik und Schiffstheorie M-8  
Radtke, Lars  
Konstruktion und Festigkeit von Schiffen M-10  
Rung, Thomas  orcid-logo
Fluiddynamik und Schiffstheorie M-8  
TORE-DOI
10.15480/882.15364
TORE-URI
https://hdl.handle.net/11420/56138
Journal
Structural and multidisciplinary optimization  
Volume
68
Issue
6
Article Number
120
Citation
Structural and Multidisciplinary Optimization 68 (6): 120 (2025)
Publisher DOI
10.1007/s00158-025-04050-7
Scopus ID
2-s2.0-105008504405
Publisher
Springer
This paper presents the shape optimization of an idealized arterial bypass graft under uncertainties. The underlying blood flow problem is numerically solved using computational fluid dynamics (CFD) simulations, able to account for mechanical hemolysis and non-Newtonian viscosity properties of blood. The employed hemolysis and non-Newtonian models utilize a set of parameters that are considered uncertain in this work. To this end, the optimization problem is rendered robust and targets the minimization of the first two statistical moments of a hemolysis index. The propagation of the uncertainties to the hemolysis index is done through the first-order second-moment method (FOSM). The necessary derivatives are computed by the adjoint method and finite differences. Several steady-state robust shape optimization simulations of the idealized bypass graft are presented. Selected optimized shapes are further assessed by means of additional fluid–structure interaction (FSI) simulations under unsteady conditions.
Subjects
Adjoint-based shape optimization
Bypass-graft
First-order second-moment method
Hemodynamics
Hemolysis
Robust shape optimization
DDC Class
620.1: Engineering Mechanics and Materials Science
621: Applied Physics
Funding(s)
Projekt DEAL  
Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen - Analyse heterogener Dämmmaterialien  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s00158-025-04050-7.pdf

Size

2.32 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback