TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Integration of enzymatic catalysts in a continuous reactive distillation column: Reaction kinetics and process simulation
 
Options

Integration of enzymatic catalysts in a continuous reactive distillation column: Reaction kinetics and process simulation

Publikationstyp
Journal Article
Date Issued
2014-12-17
Author(s)
Heils, Rene  
Niesbach, Alexander  
Wierschem, Matthias  
Claus, Dierk  
Soboll, Sebastian  
Lutze, Philip  
Smirnova, Irina  orcid-logo
Institut
Thermische Verfahrenstechnik V-8  
TORE-URI
http://hdl.handle.net/11420/12449
Journal
Industrial & engineering chemistry research  
Volume
53
Issue
50
Start Page
19612
End Page
19619
Citation
Industrial and Engineering Chemistry Research 53 (50) : 19612-19619 (2014-12-17)
Publisher DOI
10.1021/ie502827f
Scopus ID
2-s2.0-84949115798
This work presents a feasibility study for an enzymatic reaction in a continuously operated reactive distillation column. As a model reaction, the transesterification of ethyl butyrate with n-butanol in the presence of lipase CALB was considered. For use in the distillation column, lipase CALB was immobilized by entrapment in a hydrophobic silica xerogel and introduced as granulate into the catalytic packing Katapak-SP-11. The reaction kinetics was experimentally determined for different concentration and temperature ranges and described by means of the Michaelis-Menten double-substrate kinetic model in combination with the Arrhenius model. With these kinetic data, process simulations were carried out with an Aspen Custom Modeler nonequilibrium-stage model validated for a DN50 pilot-scale column. The concentration of n-butanol in the reactive section was maintained low to decrease the inhibiting effects on the enzyme. For an optimized setup and operating conditions, conversion rates of more than 90% were achieved for n-butanol and 26% for ethyl butyrate. These results clearly demonstrate that lipase CALB can be applied in a continuously operated reactive distillation column.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback