TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Mor: multichannel opportunistic routing for wireless sensor networks
 
Options

Mor: multichannel opportunistic routing for wireless sensor networks

Publikationstyp
Conference Paper
Date Issued
2017-02
Sprache
English
Author(s)
Zhang, Peilin
Landsiedel, Olaf  
Theel, Oliver  
TORE-URI
https://hdl.handle.net/11420/53905
Start Page
36
End Page
47
Citation
International Conference on Embedded Wireless Systems and Networks, EWSN 2017: 36-7
Contribution to Conference
International Conference on Embedded Wireless Systems and Networks, EWSN 2017  
Scopus ID
2-s2.0-85039456337
Publisher
Junction Publishing
ISBN
978-0-9949-8861-4
Wireless Sensor Networks (WSNs) share the 2.4 GHz ISM band with a number of wireless technologies, such as WiFi and Bluetooth. This and external interference from electrical devices, such as, for example, microwaves, deteriorate the reliability of many routing protocols in WSNs. Multichannel communication strategies allow routing protocols to provide reliability in presence of interference. In this paper, we propose robust, reliable, and energyefficient Multichannel Opportunistic Routing (MOR) for WSNs. MOR employs both opportunistic routing and opportunistic multichannel hopping strategies, in order to improve the robustness of the network to interference. Furthermore, it empowers MOR to take advantage of not only the spatial and temporal diversities as traditional opportunistic routing in WSNs does but also the frequency diversity. We implement MOR in Contiki and conduct extensive experiments in the FlockLab testbed. Under interference MOR provides an end-to-end packet delivery ratio (PDR) of more than 98%, while other protocols such as, for example, ORPL, obtain a PDR of merely 25%. Additionally, MOR’s duty cycle stays below 2% for these settings and latency is less than 2 seconds. In interferencefree scenarios, MOR achieves a performance similar to our baseline protocol ORPL, with only an approximately 0.3% increment of the duty cycle.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback