TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Normal approximation of Kabanov–Skorohod Integrals on poisson spaces
 
Options

Normal approximation of Kabanov–Skorohod Integrals on poisson spaces

Citation Link: https://doi.org/10.15480/882.8873
Publikationstyp
Journal Article
Date Issued
2024-06
Sprache
English
Author(s)
Last, Günter  
Molchanov, Ilya  
Schulte, Matthias  
Mathematik E-10  
TORE-DOI
10.15480/882.8873
TORE-URI
https://hdl.handle.net/11420/44327
Journal
Journal of theoretical probability  
Volume
37
Issue
2
Start Page
1124
End Page
1167
Citation
Journal of Theoretical Probability 37 (2): 1124-1167 (2024)
Publisher DOI
10.1007/s10959-023-01287-0
Scopus ID
2-s2.0-85169316274
We consider the normal approximation of Kabanov–Skorohod integrals on a general Poisson space. Our bounds are for the Wasserstein and the Kolmogorov distance and involve only difference operators of the integrand of the Kabanov–Skorohod integral. The proofs rely on the Malliavin–Stein method and, in particular, on multiple applications of integration by parts formulae. As examples, we study some linear statistics of point processes that can be constructed by Poisson embeddings and functionals related to Pareto optimal points of a Poisson process.
Subjects
Kabanov–Skorohod integral
Malliavin calculus
Normal approximation
Poisson process
Stein’s method
DDC Class
510: Mathematics
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s10959-023-01287-0.pdf

Type

Main Article

Size

574.21 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback