TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Effects of bubble-induced turbulence on interfacial species transport: A direct numerical simulation study
 
Options

Effects of bubble-induced turbulence on interfacial species transport: A direct numerical simulation study

Publikationstyp
Journal Article
Date Issued
2023-09-05
Sprache
English
Author(s)
Jin, Yan 
Technische Thermodynamik M-21  
Cavero, R. F.
Weiland, Christian  
Mehrphasenströmungen V-5  
Hoffmann, Marko  
Mehrphasenströmungen V-5  
Schlüter, Michael  orcid-logo
Mehrphasenströmungen V-5  
TORE-URI
https://hdl.handle.net/11420/40832
Journal
Chemical engineering science  
Volume
279
Article Number
118934
Citation
Chemical Engineering Science 279: 118934 (2023-09-05)
Publisher DOI
10.1016/j.ces.2023.118934
Scopus ID
2-s2.0-85161500758
Publisher
Elsevier
A direct numerical simulation (DNS) study is carried out to understand the effects of bubble-induced turbulence on the interfacial species transport. A volume-of-fluid (VOF) method is used in the DNS to simulate the multiphase flow in a box containing one or two deformable bubbles. The bubbly flows with Schmidt numbers 1≤Sc≤64, Reynolds numbers 100≤ReB≤750, Eötvös number Eo=1.21 and gas volume fractions 2.8%≤αg≤22.1% have been investigated. The DNS results indicate that the one-dimensional energy spectra evolve as the power −3 of the wavenumber at large scales. At a high Schmidt number, an inertial subrange characterized by the -5/3 slope can be found in the power spectra of species concentration. The power spectra of species concentration for different Schmidt numbers become close to each other when the wavenumber is scaled with Sc0.5. The bubble-induced turbulence enhances the oscillation of the transient Sherwood number, however, it has marginal effects on the time-averaged value. By contrast, the time-averaged Sherwood number for a fixed Peclet number increases with an increase of αg, indicating that convection plays a more important role in species transport when the bubbles are more densely populated. A possible reason is that, the neighboring bubbles enhance the spatial fluctuations of the velocity, which favor the interfacial species transfer. The energy spectrum confirms that an increase of αg leads to stronger spatial fluctuations of the vertical velocity component at low wavenumbers.
Subjects
Bubble
Interfacial species transfer
Sherwood number
Turbulence
Volume-of-fluid method
DDC Class
660: Chemistry; Chemical Engineering
Funding(s)
Experimental Investigation of Reactive Bubbly Flows - Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback