TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Reliable damping of free-surface waves in numerical simulations
 
Options

Reliable damping of free-surface waves in numerical simulations

Publikationstyp
Journal Article
Date Issued
2016
Sprache
English
Author(s)
Peric, Robinson  
Abdel-Maksoud, Moustafa  orcid-logo
Institut
Fluiddynamik und Schiffstheorie M-8  
TORE-URI
http://hdl.handle.net/11420/5930
Journal
Ship Technology Research  
Volume
63
Issue
1
Start Page
1
End Page
13
Citation
Ship Technology Research 1 (63): 1-13 (2016)
Publisher DOI
10.1080/09377255.2015.1119921
Scopus ID
2-s2.0-84968616647
This paper generalises existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model and full scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular free-surface waves are given.
Subjects
Absorbing layer
Damping coefficient
Damping of free-surface waves
Scaling law
Volume of fluid (VOF) method
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback