TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Architecture and Parameter Optimization for Aircraft Electro-Hydraulic Power Generation and Distribution Systems
 
Options

Architecture and Parameter Optimization for Aircraft Electro-Hydraulic Power Generation and Distribution Systems

Publikationstyp
Conference Paper
Date Issued
2015-09-15
Sprache
English
Author(s)
Dunker, Carsten  
Bornholdt, Riko  
Thielecke, Frank  
Behr, Robert  
Institut
Flugzeug-Systemtechnik M-7  
TORE-URI
http://hdl.handle.net/11420/7014
Journal
SAE technical papers  
Issue
September
Citation
SAE Technical Papers: (2015-09-15)
Publisher DOI
10.4271/2015-01-2414
Scopus ID
2-s2.0-84959378335
The All-Electric-Engine with only electrical power offtake is a main goal in aircraft system development. The use of electric-motor pumps instead of engine-driven pumps for powering the central hydraulic systems could be a part of this objective. Additionally, the concept would meet the incremental development strategy performed by the aerospace industry today and saves costs by using state-of-the-art hydraulic actuation technology. This paper describes a process for optimizing such systems regarding their architecture and design parameters. For this task a methodology for the hydraulic consumer allocation called OPAL is used and extended by an automatic power system sizing. Feasible allocations, called permutations, are determined on the basis of preliminary system safety assessments regarding multiple top failure events. In the next step an automated sizing of the permutations is performed based on simplified hydraulic load analyses. This enables a comparison of a large number of architectures in a very short time to optimize the electro-hydraulic system architecture. In the next part of the process a more detailed sizing of the electro-hydraulic system is performed for selected example architectures. Here a steady-state sizing of the power system is carried out with the Hamburg University of Technology tool ArOLab. The pipe network sizing is automated by using an optimization that finds a design that meets the performance requirements with a minimum of mass. The function is used to do a rapid evaluation of different design variables that influence the later system performance. The whole process is demonstrated by a test case study in which electro-hydraulic architectures are optimized for a mid-range aircraft.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback