TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Electro-sorption and -desorption characteristics of electrically conductive polyacrylonitrile membranes to remove aqueous natural organic matter in dead-end ultrafiltration system
 
Options

Electro-sorption and -desorption characteristics of electrically conductive polyacrylonitrile membranes to remove aqueous natural organic matter in dead-end ultrafiltration system

Citation Link: https://doi.org/10.15480/882.9093
Publikationstyp
Journal Article
Date Issued
2024-02
Sprache
English
Author(s)
Usman, Muhammad  
Glaß, Sarah  
Mantel, Tomi Jonathan  orcid-logo
Wasserressourcen und Wasserversorgung B-11  
Filiz, Volkan  
Ernst, Mathias  orcid-logo
Wasserressourcen und Wasserversorgung B-11  
TORE-DOI
10.15480/882.9093
TORE-URI
https://hdl.handle.net/11420/45275
Journal
Journal of Water Process Engineering  
Volume
58
Article Number
104733
Citation
Journal of Water Process Engineering 58: 104733 (2024)
Publisher DOI
10.1016/j.jwpe.2023.104733
Scopus ID
2-s2.0-85181922584
Publisher
Elsevier
Electrically conductive (EC) membranes have emerged as an innovative approach in removing natural organic matter (NOM) by electro-sorption (e-sorption) when external anodic potential (AP) is applied. In this study, the EC membranes were established by a forming a porous nanolayer of Pt nanoparticles via magnetron sputtering on both sides of virgin and chemically modified PAN ultrafiltration (UF) membranes. The modified PAN membranes were functionalized with ethylenediamine (PAN-EDA) and sodium hydroxide (PAN-NaOH). The virgin PAN membrane material contains nitrile group and demonstrated a negative zeta potential in the analyzed pH range. The PAN-EDA membrane owned amidine and amine groups, whereas PAN-NaOH membrane possessed carboxyl and amide groups in the membrane matrix. The PAN-NaOH and PAN-EDA membranes exhibited isoelectric points at 3.7 and 7.8, respectively. Electrical field-assisted UF experiments were conducted with Suwannee River NOM in dead-end mode and NOM removal was monitored using different methods of NOM characterization (e.g., SEC, DOC and UV254 absorbance). The results revealed that the non-electrically conductive (NEC) and EC virgin PAN membranes exhibited almost no intrinsic adsorption (at 0 V external potential) and e-sorption of NOM at 2.5 V AP respectively. However, NEC PAN-NaOH and PAN-EDA membranes showed DOC intrinsic sorption loadings of 17 mg·m−2 and 258 mg·m−2 at permeate flux 100 L·m−2·h−1 and pH 7 respectively. In comparison, the DOC e-sorption loadings of the EC PAN-NaOH and EC PAN-EDA membranes at 2.5 V AP were 197 mg·m−2 and 525 mg·m−2 under same test conditions respectively. The NOM e-desorption characteristics of the EC modified PAN membranes were also investigated to regenerate membranes for a sustainable filtration process. The results indicated that the EC PAN-NaOH and PAN-EDA membranes can be regenerated by reversing the electrical polarity almost completely. In conclusions, the outcomes of this work confirm that the presence of the derivatives of amines (e.g., amines, amidine and amide groups) and carboxyl group are necessary in the membrane matrix to induce e-sorption and -desorption characteristics.
Subjects
DBPs precursors removal
Drinking water treatment
Electrical field–assisted UF
Membrane regeneration
NOM characterization
Size exclusion chromatography
DDC Class
624: Civil Engineering, Environmental Engineering
Funding(s)
Elektrisch leitfähige poröse Materialien (Membranen) zur Elektrosorption/- desorption natürlicher organischer Wasserinhaltsstoffe  
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2214714423012539-main.pdf

Type

Main Article

Size

3.88 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback