TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Closed-loop stability and performance optimization in LPV control based on a reduced parameter set
 
Options

Closed-loop stability and performance optimization in LPV control based on a reduced parameter set

Publikationstyp
Conference Paper
Date Issued
2012
Sprache
English
Author(s)
Hoffmann, Christian  
Hashemi, Seyed Mahdi 
Abbas, Hossam El-Din Mahmoud Seddik  
Werner, Herbert  
Institut
Regelungstechnik E-14  
TORE-URI
http://hdl.handle.net/11420/14756
Journal
Proceedings of the IEEE Conference on Decision & Control  
Volume
2012
Start Page
5146
End Page
5151
Article Number
6427053
Citation
Proceedings of the IEEE Conference on Decision and Control (): 6427053 5146-5151 (2012-01-01)
Contribution to Conference
51st IEEE Conference on Decision and Control, CDC 2012  
Publisher DOI
10.1109/CDC.2012.6427053
Scopus ID
2-s2.0-84874279849
Publisher
IEEE
A difficulty encountered in applying linear parameter-varying (LPV) control is the complexity of synthesis and implementation for large numbers of scheduling parameters. Often, heuristic solutions involve neglecting individual scheduling parameters, such that LPV controller synthesis methods become applicable. However, stability and performance guarantees are rendered void, if a controller design based on an approximate model is implemented on the original plant. In this paper, a posteriori conditions are proposed to assess closed-loop stability and performance and possibly recover guarantees. The controller - synthesized based on a reduced parameter set - is first transformed back to depend on the original parameters. Then analysis is performed with respect to the original plant model, which is considered to be accurate. Moreover, an iterative approach for optimizing controllers with few scheduling parameters is sketched. A two-degrees-of-freedom (2-DOF) robotic manipulator is considered as an illustrative example. Experimental results indicate a significant increase in performance.
DDC Class
600: Technik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback