TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Iodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media
 
Options

Iodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media

Publikationstyp
Journal Article
Date Issued
2018-12-01
Sprache
English
Author(s)
Shokri-Kuehni, Salomé M. S.  
Bergstad, Mina  
Sahimi, Muhammad  
Webb, Colin  
Shokri, Nima  
TORE-URI
http://hdl.handle.net/11420/9445
Journal
Scientific reports  
Volume
8
Issue
1
Article Number
10731
Citation
Scientific Reports 8 (1): 10731 (2018-12-01)
Publisher DOI
10.1038/s41598-018-29115-0
Scopus ID
2-s2.0-85050384754
PubMed ID
30013231
Increasing salinity in groundwater and soil poses a threat to water and land resources. With the expectation of major changes to the hydrological cycle through climate change, the need for understanding the fundamental processes governing solute transport through soil has grown significantly. We provide experimentally verified insights into the influence of particle size distribution on solute transport in porous media during evaporation at the pore- and macro-scales. To do so, we utilized four-dimensional (space plus time) synchrotron X-ray tomography for iodine k-edge dual energy imaging to obtain solute concentration profiles in every single pore during saline water evaporation from coarse- and fine-grained sands. Close to the surface of the coarse-grained sand significantly higher salt concentrations were observed when compared to fine-grained sand with the same porosity under similar cumulative evaporative mass losses. The physics behind this behaviour was delineated using the recorded data with high spatial and temporal resolutions. Moreover, the measured data enabled us to quantify the variations of the effective dispersion coefficient during evaporation and how it is influenced by the particle size distribution. We show that, contrary to common assumption in modelling of solute transport during evaporation, the effective dispersion coefficient varies as a function of liquid saturation and the length of the invaded zone during evaporation from porous media, and that it increases as liquid saturation decreases.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback