Options
An energy-efficient adaptive course control system for ocean surface ships
Citation Link: https://doi.org/10.15480/882.3349
Publikationstyp
Conference Paper
Date Issued
2019-09
Sprache
English
Herausgeber*innen
TORE-DOI
TORE-URI
Article Number
52
Citation
11th International Workshop on Ship and Marine Hydrodynamics (IWSH2019), Paper 52
Contribution to Conference
In order to improve the performance and the energy efficiency (rudder actions) of the ship control system in presence of changing environmental conditions and system uncertainty, this paper develops a novel adaptive fuzzy-PID course controller with a dynamic compensator and a nonlinear feedback for the autonomous surface ship. Firstly, an adaptive PID control strategy, whose control parameters are real-time adjusted by the fuzzy system, is designed to achieve the optimal control effect and the robust performance. Then, considering the uncertainty and unpredictable external disturbances, the Least Square Support Vector Machines (LSSVM) approach is employed to online identify and suppress the disturbances for the purpose of compensating the Fuzzy-PID controller. Furthermore, the nonlinear feedback is added in the control law to deal with the control inputs, and then the whole control system is named as “NFPL”. The effectiveness and quality of the designed controller are investigated in the numerical simulations. Results demonstrate good adaptability and robust performance of the designed control system in spite of the existence of the time-varying environmental disturbance, and the advantages in the reduction of the settling time and rudder energy consumption as well as fast response are also verified.
Subjects
Dynamic compensator
Energy efficient
NFPL controller
Nonlinear feedback
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding Organisations
China Scholarships Council
Ghent University
More Funding Information
This work was supported by the program of China Scholarships Council (No.201706570007) and Special Research Fund - Cofunding for Chinese candidates holding a CSC-grant in Ghent University (01SC8418).
Loading...
Name
paper_0052_file_0414_An_Energy_Efficient_Adaptive_Course_Control_System_for_Ocean_Sur.pdf
Size
456.72 KB
Format
Adobe PDF