Options
Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil
Citation Link: https://doi.org/10.15480/882.1768
Publikationstyp
Journal Article
Publikationsdatum
2017-07-31
Sprache
English
Institut
Enthalten in
Volume
7
Issue
1
Start Page
Article number: 6872
Citation
Scientific Reports 1 (7): (2017)
Publisher DOI
Publisher
Nature Publishing Group
Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 μg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.
Schlagworte
magnetic particle imaging
MPI
intravenously injected tracer
DDC Class
530: Physik
610: Medizin
More Funding Information
Support of the German Research Foundation (DFG) and the Federal Ministry of Education and Research (BMBF) (Grant Numbers BU 1436/10-1 and 13GW0069A), German Research Foundation (DFG, grant numbers KN 1108/2-1 and AD 125/5-1). Work at UW was supported by NIH grant R42 EB013520-02A1.
Loading...
Name
s41598-017-06992-5.pdf
Size
3.04 MB
Format
Adobe PDF