TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. 2D photonic crystal emitter at 1,400°C for thermophotovoltaic energy harvesting
 
Options

2D photonic crystal emitter at 1,400°C for thermophotovoltaic energy harvesting

Citation Link: https://doi.org/10.15480/882.16067
Publikationstyp
Journal Article
Date Issued
2025-10-15
Sprache
English
Author(s)
Chirumamilla, Manohar  
Optische und Elektronische Materialien E-12  
Vaidhyanathan Krishnamurthy, Gnanavel  
Häntsch, Quynh Yen  
Keramische Hochleistungswerkstoffe M-9  
Finsel, Maik  
Shang, Guoliang  
Optische und Elektronische Materialien E-12  
Rout, Surya Snata  
Betriebseinheit Elektronenmikroskopie M-26  
Maiwald, Lukas 
Optische und Elektronische Materialien E-12  
Krekeler, Tobias  
Betriebseinheit Elektronenmikroskopie BEEM  
Ritter, Martin  orcid-logo
Betriebseinheit Elektronenmikroskopie BEEM  
Störmer, Michael  
Pedersen, Kjeld  
Vossmeyer, Tobias  
Schneider, Gerold A.  
Keramische Hochleistungswerkstoffe M-9  
Eich, Manfred  
Optische und Elektronische Materialien E-12  
Petrov, Alexander  orcid-logo
Optische und Elektronische Materialien E-12  
TORE-DOI
10.15480/882.16067
TORE-URI
https://hdl.handle.net/11420/58394
Journal
Cell reports  
Volume
6
Issue
10
Article Number
102850
Citation
Cell Reports 6 (10): 102850 (2025)
Publisher DOI
10.1016/j.xcrp.2025.102850
Scopus ID
2-s2.0-105019311153
Publisher
Elsevier
Spectrally selective emitters that endure extreme temperatures (exceeding 1,000°C) are vital for thermophotovoltaic energy harvesting. Here, we report a 2D photonic crystal emitter composed of yttria-stabilized zirconia particles on a tungsten mirror, fabricated through a simple and scalable self-assembly process. The emitter demonstrates spectral stability for 2 h and structural stability for 14 h at 1,400°C under high vacuum, with degradation attributed to zirconium nitridation, which is avoided under Ar or forming gas atmospheres. Long-term durability is demonstrated over 6 months and 200 thermal cycles at 1,050°C, effectively mitigating tungsten oxidation. The emitter achieves 52% spectral efficiency for a 0.72 eV photovoltaic band gap. This work offers perspectives on designing and implementing spectrally selective emitters that remain stable at high temperatures and resilient in harsh environments, representing a significant step forward in developing robust thermophotovoltaic energy-harvesting systems.
Subjects
energy harvesting
high temperature
long-term stability
photonic crystals
refractory metals
spectrally selective emitters
structural stability
thermal emitters
thermal stability
thermophotovoltaics
DDC Class
530: Physics
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2666386425004497-main.pdf

Size

9.19 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback