TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites
 
Options

Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites

Publikationstyp
Journal Article
Date Issued
2016-09-15
Sprache
English
Author(s)
Behr, Sebastian  
Jungblut, Laura  
Swain, Michael V.  
Schneider, Gerold A.  
Institut
Keramische Hochleistungswerkstoffe M-9  
TORE-URI
http://hdl.handle.net/11420/5272
Journal
ACS applied materials & interfaces  
Volume
8
Issue
40
Start Page
27322
End Page
27331
Citation
ACS Applied Materials and Interfaces 40 (8): 27322-27331 (2016)
Publisher DOI
10.1021/acsami.6b09050
Scopus ID
2-s2.0-84991738531
Publisher
American Chemical Society
The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m2, respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.
Subjects
adhesive bonding
epoxy
interfacial shear strength
interfacial toughness
nacre-inspired composites
sapphire
DDC Class
530: Physik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback