TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. An eigenvalue stabilization technique for immersed boundary finite element methods in explicit dynamics
 
Options

An eigenvalue stabilization technique for immersed boundary finite element methods in explicit dynamics

Citation Link: https://doi.org/10.15480/882.9612
Publikationstyp
Journal Article
Date Issued
2024-07-15
Sprache
English
Author(s)
Eisenträger, Sascha  
Radtke, Lars  
Konstruktion und Festigkeit von Schiffen M-10  
Garhuom, Wadhah  orcid-logo
Konstruktion und Festigkeit von Schiffen M-10  
Löhnert, S.
Düster, Alexander  
Konstruktion und Festigkeit von Schiffen M-10  
Juhre, Daniel  
Schillinger, Daniel  
TORE-DOI
10.15480/882.9612
TORE-URI
https://hdl.handle.net/11420/47644
Journal
Computers and mathematics with applications  
Volume
166
Start Page
129
End Page
168
Citation
Computers and Mathematics with Applications 166: 129-168 (2024)
Publisher DOI
10.1016/j.camwa.2024.04.008
Scopus ID
2-s2.0-85192311212
Publisher
Elsevier Science
The application of immersed boundary methods in static analyses is often impeded by poorly cut elements (small cut elements problem), leading to ill-conditioned linear systems of equations and stability problems. While these concerns may not be paramount in explicit dynamics, a substantial reduction in the critical time step size based on the smallest volume fraction χ of a cut element is observed. This reduction can be so drastic that it renders explicit time integration schemes impractical. To tackle this challenge, we propose the use of a dedicated eigenvalue stabilization (EVS) technique. The EVS-technique serves a dual purpose. Beyond merely improving the condition number of system matrices, it plays a pivotal role in extending the critical time increment, effectively broadening the stability region in explicit dynamics. As a result, our approach enables robust and efficient analyses of high-frequency transient problems using immersed boundary methods. A key advantage of the stabilization method lies in the fact that only element-level operations are required. This is accomplished by computing all eigenvalues of the element matrices and subsequently introducing a stabilization term that mitigates the adverse effects of cutting. Notably, the stabilization of the mass matrix Mc of cut elements – especially for high polynomial orders p of the shape functions – leads to a significant raise in the critical time step size Δtcr. To demonstrate the efficiency of our technique, we present two specifically selected dynamic benchmark examples related to wave propagation analysis, where an explicit time integration scheme must be employed to leverage the increase in the critical time step size.
Subjects
Eigenvalue decomposition
Explicit dynamics
Immersed boundary methods
Mass lumping
Spectral cell method
Stabilization technique
DDC Class
510: Mathematics
620.1: Engineering Mechanics and Materials Science
624.17: Structural Analysis and Design
Funding(s)
Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen - Analyse heterogener Dämmmaterialien  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0898122124001664-main.pdf

Type

Main Article

Size

4.07 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback