TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. A ferroelectric liquid crystal confined in cylindrical nanopores : reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations
 
Options

A ferroelectric liquid crystal confined in cylindrical nanopores : reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations

Citation Link: https://doi.org/10.15480/882.1614
Publikationstyp
Journal Article
Date Issued
2017-11-27
Sprache
English
Author(s)
Busch, Mark  orcid-logo
Kityk, Andriy V.  
Piecek, Wiktor  
Hofmann, Tommy  orcid-logo
Wallacher, Dirk  
Calus, Sylwia  
Kula, Przemyslaw  
Steinhart, Martin  
Eich, Manfred  
Huber, Patrick  orcid-logo
Institut
Optische und Elektronische Materialien E-12  
Werkstoffphysik und -technologie M-22  
TORE-DOI
10.15480/882.1614
TORE-URI
http://hdl.handle.net/11420/1617
Journal
Nanoscale  
Volume
9
Issue
48
Start Page
19086
End Page
19099
Citation
Nanoscale 9, (2017) 48 : pp. 19086-19099
Publisher DOI
10.1039/C7NR07273B
Scopus ID
2-s2.0-85038432396
ArXiv ID
1711.09673v1
Publisher
Royal Society of Chemistry (RSC)
Is Version Of
http://arxiv.org/abs/1711.09673v1
Is Supplemented By
10.5281/zenodo.1243648
The orientational and translational order of a thermotropic ferroelectric liquid crystal (2MBOCBC) imbibed in self-organized, parallel, cylindrical pores with radii of 10, 15, or 20 nm in anodic aluminium oxide monoliths (AAO) are explored by high-resolution linear and circular optical birefringence as well as neutron diffraction texture analysis. The results are compared to experiments on the bulk system. The native oxidic pore walls do not provide a stable smectogen wall anchoring. By contrast, a polymeric wall grafting enforcing planar molecular anchoring results in a thermal-history independent formation of smectic C* helices and a reversible chevron-like layer buckling. An enhancement of the optical rotatory power by up to one order of magnitude of the confined compared to the bulk liquid crystal is traced to the pretransitional formation of helical structures at the smectic-A*-to-smectic-C* transformation. A linear electro-optical birefringence effect evidences collective fluctuations in the molecular tilt vector direction along the confined helical superstructures, i.e. the Goldstone phason excitations typical of the para-to-ferroelectric transition. Their relaxation frequencies increase with the square of the inverse pore radii as characteristic of plane-wave excitations and are two orders of magnitude larger than in the bulk, evidencing an exceptionally fast electro-optical functionality of the liquid-crystalline-AAO nanohybrids.
Subjects
Physics - Soft Condensed Matter
Physics - Soft Condensed Matter
Physics - Mesoscopic Systems and Quantum Hall Effect
Physics - Materials Science
Physics - Chemical Physics
Physics - Optics
DDC Class
530: Physik
Funding(s)
SFB 986: Teilprojekt B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen  
SFB 986: Teilprojekt C2 - Keramikbasierte hochtemperaturstabile Wärmestrahlungsreflektoren und Strukturfarben  
Lizenz
https://creativecommons.org/licenses/by-nc/3.0/
Loading...
Thumbnail Image
Name

c7nr07273b.pdf

Size

6.89 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback