TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Durability of plant fiber composites for structural application: A brief review
 
Options

Durability of plant fiber composites for structural application: A brief review

Citation Link: https://doi.org/10.15480/882.5179
Publikationstyp
Journal Article
Date Issued
2023-05-25
Sprache
English
Author(s)
Jia, Yunlong  
Fiedler, Bodo  orcid-logo
Yang, Wenkai  
Feng, Xinjian  
Tang, Jingwen  
Liu, Jianming  
Zhang, Peigen  
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-DOI
10.15480/882.5179
TORE-URI
http://hdl.handle.net/11420/15401
Journal
Materials  
Start Page
1
End Page
21
Citation
Materials 16 (11): 3962 (2023-05-25)
Publisher DOI
10.3390/ma16113962
Scopus ID
2-s2.0-85161547203
Publisher
Multidisciplinary Digital Publishing Institute
Environmental sustainability and eco-efficiency stand as imperative benchmarks for the upcoming era of materials. The use of sustainable plant fiber composites (PFCs) in structural components has garnered significant interest within industrial community. The durability of PFCs is an important consideration and needs to be well understood before their widespread application. Moisture/water aging, creep properties, and fatigue properties are the most critical aspects of the durability of PFCs. Currently, proposed approaches, such as fiber surface treatments, can alleviate the impact of water uptake on the mechanical properties of PFCs, but complete elimination seems impossible, thus limiting the application of PFCs in moist environments. Creep in PFCs has not received as much attention as water/moisture aging. Existing research has already found the significant creep deformation of PFCs due to the unique microstructure of plant fibers, and fortunately, strengthening fiber-matrix bonding has been reported to effectively improve creep resistance, although data remain limited. Regarding fatigue research in PFCs, most research focuses on tension-tension fatigue properties, but more attention is required on compression-related fatigue properties. PFCs have demonstrated a high endurance of one million cycles under a tension-tension fatigue load at 40% of their ultimate tensile strength (UTS), regardless of plant fiber type and textile architecture. These findings bolster confidence in the use of PFCs for structural applications, provided special measures are taken to alleviate creep and water absorption. This article outlines the current state of the research on the durability of PFCs in terms of the three critical factors mentioned above, and also discusses the associated improvement methods, with the hope that it can provide readers with a comprehensive overview of PFCs’ durability and highlight areas worthy of further research.
DDC Class
660: Technische Chemie
670: Industrielle Fertigung
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

materials-16-03962.pdf

Size

2.36 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback