TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. The new year wave: Spatial evolution of an extreme sea state
 
Options

The new year wave: Spatial evolution of an extreme sea state

Publikationstyp
Journal Article
Date Issued
2009-11-01
Author(s)
Clauss, Günther F.  
Klein, Marco  orcid-logo
TORE-URI
http://hdl.handle.net/11420/4520
Journal
Journal of offshore mechanics and arctic engineering  
Volume
131
Issue
4
Start Page
1
End Page
9
Citation
Journal of Offshore Mechanics and Arctic Engineering 4 (131): 1-9 (2009-11-01)
Publisher DOI
10.1115/1.3160533
In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. Many publications investigated the occurrence of extreme waves, their characteristics and their impact on offshore structures, but their formation process is still under discussion. One of the famous real world registrations is the so called "New Year wave," recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the spatial development of the New Year wave generated in a model basin. To transfer the recorded New Year wave into the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is applied. The extreme sea state obtained with this method is measured at different locations in the tank, in a range from 2163 m (full scale) ahead of to 1470 m behind the target position-520 registrations altogether. The focus lies on the detailed description of a possible evolution of the New Year wave over a large area and time interval. It is observed that the extreme wave at the target position develops mainly from a wave group of three smaller waves. The group velocity, wave propagation, and the energy flux of this wave group are analyzed, in particular.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback