TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Oxidation-state dynamics and emerging patterns in magnetite
 
Options

Oxidation-state dynamics and emerging patterns in magnetite

Citation Link: https://doi.org/10.15480/882.8257
Publikationstyp
Journal Article
Date Issued
2023
Sprache
English
Author(s)
Gürsoy, Emre  
Molekulardynamische Simulation weicher Materie M-EXK2  
Vonbun-Feldbauer, Gregor  orcid-logo
Keramische Hochleistungswerkstoffe M-9  
Meißner, Robert  orcid-logo
Molekulardynamische Simulation weicher Materie M-EXK2  
TORE-DOI
10.15480/882.8257
TORE-URI
https://hdl.handle.net/11420/42781
Journal
Journal of physical chemistry letters  
Volume
14
Issue
30
Start Page
6800
End Page
6807
Citation
Journal of Physical Chemistry Letters 14 (30): 6800-6807 (2023)
Publisher DOI
10.1021/acs.jpclett.3c01290
Scopus ID
2-s2.0-85166442695
Magnetite is an important mineral with many interesting applications related to its magnetic, electrical, and thermal properties. Typically studied by electronic structure calculations, these methods are unable to capture the complex ion dynamics at relevant temperatures, time, and length scales. We present a hybrid Monte Carlo/molecular dynamics (MC/MD) method based on iron oxidation-state swapping for accurate atomistic modeling of bulk magnetite, magnetite surfaces, and nanoparticles that captures the complex ionic dynamics. By comparing the oxidation-state patterns with those obtained from density functional theory, we confirmed the accuracy of our approach. Lattice distortions leading to the stabilization of excess charges and a critical surface thickness at which the oxidation states transition from ordered to disordered were observed. This simple yet efficient approach paves the way for elucidating aspects of oxidation-state ordering of inverse spinel structures in general and battery materials in particular.
DDC Class
570: Life Sciences, Biology
Funding(s)
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

acs.jpclett.3c01290.pdf

Size

3.81 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback