TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. SC-earth: a station-based serially complete earth dataset from 1950 to 2019
 
Options

SC-earth: a station-based serially complete earth dataset from 1950 to 2019

Publikationstyp
Journal Article
Date Issued
2021-08-15
Sprache
English
Author(s)
Tang, Guoqiang  
Clark, Martyn P.  
Papalexiou, Simon Michael  
TORE-URI
https://hdl.handle.net/11420/57806
Journal
Journal of climate  
Volume
34
Issue
16
Start Page
6493
End Page
6511
Citation
Journal of climate 34 (16): 6493-6511 (2021)
Publisher DOI
10.1175/JCLI-D-21-0067.1
Scopus ID
2-s2.0-85111124217
Publisher
American Meteorological Society
Meteorological data from ground stations suffer from temporal discontinuities caused by missing values and short measurement periods. Gap-filling and reconstruction techniques have proven to be effective in producing serially complete station datasets (SCDs) that are used for a myriad of meteorological applications (e.g., developing gridded meteorological datasets and validating models). To our knowledge, all SCDs are developed at regional scales. In this study, we developed the serially complete Earth (SC-Earth) dataset, which provides daily precipitation, mean temperature, temperature range, dewpoint temperature, and wind speed data from 1950 to 2019. SC-Earth utilizes raw station data from the Global Historical Climatology Network–Daily (GHCN-D) and the Global Surface Summary of the Day (GSOD). A unified station repository is generated based on GHCN-D and GSOD after station merging and strict quality control. ERA5 is optimally matched with station data considering the time shift issue and then used to assist the global gap filling. SC-Earth is generated by merging estimates from 15 strategies based on quantile mapping, spatial interpolation, machine learning, and multistrategy merging. The final estimates are bias corrected using a combination of quantile mapping and quantile delta mapping. Comprehensive validation demonstrates that SC-Earth has high accuracy around the globe, with degraded quality in the tropics and oceanic islands due to sparse station networks, strong spatial precipitation gradients, and degraded ERA5 estimates. Meanwhile, SC-Earth inherits potential limitations such as inhomogeneity and precipitation undercatch from raw station data, which may affect its application in some cases. Overall, the high-quality and high-density SC-Earth dataset will benefit research in fields of hydrology, ecology, meteorology, and climate. The dataset is available at https://zenodo.org/record/4762586.
Subjects
Databases
In situ atmospheric observations
Machine learning
Precipitation
Temperature
Wind
DDC Class
551: Geology, Hydrology Meteorology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback