Options
Maximum size of r-cross t-intersecting families
Publikationstyp
Conference Paper
Publikationsdatum
2021-05
Sprache
English
Institut
Enthalten in
Volume
195
Start Page
453
End Page
458
Citation
11th Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2021)
Contribution to Conference
Publisher DOI
Scopus ID
Given r families of subsets of a fixed n-set, we say that they are r-cross t-intersecting if for every choice of representatives, exactly one from each family, the common intersection of these representatives is of size at least t. We obtain a generalisation of a result by Hilton and Milner on cross intersecting families. In particular, we determine the maximum possible sum of the sizes of non-empty r-cross t-intersecting families in the case when all families are k-uniform and in the case when they are arbitrary subfamilies of the power set. Only some special cases of these results had been proved before. The method we use also yields more general results concerning measures of families instead of their sizes.
Schlagworte
Erdos-Ko-Rado
Extremal set theory
Hilton-Milner
intersecting families