Options
Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
Publikationstyp
Journal Article
Date Issued
2014-10-13
Sprache
English
Author(s)
Institut
TORE-URI
Journal
Volume
10
Issue
2
Start Page
284
End Page
289
Citation
Biotechnology Journal 2 (10): 284-289 (2015-02-01)
Publisher DOI
Scopus ID
Publisher
Wiley-VCH
Protein engineering to expand the substrate spectrum of native enzymes opens new possibilities for bioproduction of valuable chemicals from non-natural pathways. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). Here, we present a de novo route for the biosynthesis of PDO from sugar, which may overcome the mentioned limitations by expanding the homoserine synthesis pathway. The accomplishment of pathway from homoserine to PDO is achieved by protein engineering of glutamate dehydrogenase (GDH) and pyruvate decarboxylase to sequentially convert homoserine to 4-hydroxy-2-ketobutyrate and 3-hydroxypropionaldehyde. The latter is finally converted to PDO by using a native alcohol dehydrogenase. In this work, we report on experimental accomplishment of this non-natural pathway, especially by protein engineering of GDH for the key step of converting homoserine to 4-hydroxy-2-ketobutyrate. These results show the feasibility and significance of protein engineering for de novo pathway design and overproduction of desired industrial products. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). In this article, a de novo route for the biosynthesis of PDO from sugars is presented. Protein engineering was successfully used to improve the specific activity of glutamate dehydrogenase for the conversion of homoserine to 4-hydroxy-2-ketobutyrate, a key step of the non-natural pathway. The new pathway was shown to work both in vitro and in vivo.
Subjects
1,3-Propanediol
De novo pathway design
Glutamate dehydrogenase
Protein engineering
DDC Class
620: Ingenieurwissenschaften