TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A directional modification of the Levkovitch-Svendsen cross-hardening model based on the stress deviator
 
Options

A directional modification of the Levkovitch-Svendsen cross-hardening model based on the stress deviator

Publikationstyp
Journal Article
Date Issued
2015-03-14
Sprache
English
Author(s)
Soyarslan, Celal  
Klusemann, Benjamin  
Bargmann, Swantje  
Institut
Kontinuums- und Werkstoffmechanik M-15  
TORE-URI
http://hdl.handle.net/11420/11428
Journal
Mechanics of materials  
Volume
86
Start Page
21
End Page
30
Article Number
2391
Citation
Mechanics of Materials 86 (July): 2391 21-30 (2015)
Publisher DOI
10.1016/j.mechmat.2015.03.003
Scopus ID
2-s2.0-84925608884
Publisher
Elsevier
Abstract In the original Levkovitch-Svendsen cross-hardening model parallel and orthogonal projections required for the yield surface evolution with respective dynamic and latent hardening effects are associated with the unit plastic flow direction np=Ėp/|Ėp|. This work gives a detailed investigation regarding the consequences and proposes the use of the so-called radial direction ns=[S-X]/|S-X| instead where S=dev(σ). It is shown that for an initially plastically anisotropic material under load paths with proportional stresses the original model brings a continuous directional change in the plastic strains. Eventually, even if the dynamic hardening component is bypassed, the material model predicts additional strengthening in loading direction due to latent hardening. In this undesired response, the broken coaxiality of the stress deviator and plastic strain rate tensor with initial anisotropy is the cause. This entanglement of isotropic/kinematic hardening and latent hardening creates difficulties - especially in the parameter identification even for the simplest uniaxial loading. The introduced modification to the model remedies this undesired feature and, hence, makes it possible to isolate the hardening sources during parameter identification stage. The discussions are supported by analytically and numerically derived yield loci for various scenarios. Our analytical studies allow definition of critical material parameter limits for the latent hardening parameter sl in terms of the initial anisotropy and the constant stress deviator ratio.
Subjects
Induced anisotropy
Initial anisotropy
Latent hardening
Levkovitch-Svendsen model
Material modeling
Plasticity
DDC Class
530: Physik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback