TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites
 
Options

Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites

Publikationstyp
Journal Article
Date Issued
2016-08-28
Sprache
English
Author(s)
Garlof, Svenja  
Fukuda, Taro  
Mecklenburg, Matthias  
Smazna, Daria  
Mishra, Yogendra Kumar  
Adelung, Rainer  
Schulte, Karl  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/5692
Journal
Composites science and technology  
Volume
134
Start Page
226
End Page
233
Citation
Composites Science and Technology (134): 226-233 (2016)
Publisher DOI
10.1016/j.compscitech.2016.08.019
Scopus ID
2-s2.0-84988945034
Publisher
Elsevier
Aerographite (AG) is a carbon aerogel consisting of three-dimensionally (3D) interconnected graphitic microtubes. This study characterizes the electrical and mechanical properties of Aerographite/epoxy composites under tensile load. Aerographite can be used as a highly tailorable filler in polymer nanocomposites (PNCs) where the carbon filler and the matrix form an interpenetrating structure, contrary to particle filled systems. Aerographite networks with densities ranging from 3.0 to 13.9 mg/cm3 were produced in a chemical vapour deposition (CVD) process. An infiltration with epoxy leads to Aerographite/epoxy composites with filler contents in the range of 0.26–1.24 wt%. Their electrical conductivity is in the range of 2–13.6 S/m, thus, orders of magnitude higher compared to CNT-based PNCs at comparable filler contents. Although a large amount of direct interconnections of the graphitic tubes is given, interestingly the Aerographite/epoxy composites show a piezoresistive behaviour comparable to PNCs filled with carbon nanotubes (CNT) or graphene. Unexpected shifts between external mechanical strain and electrical signal have been observed in incremental piezoresistive experiments. Young's moduli and tensile strengths of the PNCs are not affected by embedding Aerographite networks. Fractographic observations identify graphitic wall slippage as the dominating failure mechanism. Both, piezoresistive characterization and fractography studies have been correlated and a model for the observed piezoresistive response is derived.
DDC Class
530: Physik
620: Ingenieurwissenschaften
More Funding Information
German Research Foundation under schemes SFB 986, 183 CE/17-1 (to RA)
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback