TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Deep-Learning-Verfahren zur 3D-Objekterkennung in der Logistik
 
Options

Deep-Learning-Verfahren zur 3D-Objekterkennung in der Logistik

Citation Link: https://doi.org/10.15480/882.3208
Other Titles
Deep learning for 3D object recognition in logistics
Publikationstyp
Conference Paper
Date Issued
2018-11-30
Sprache
German
Author(s)
Thiel, Marko  orcid-logo
Hinckeldeyn, Johannes  orcid-logo
Kreutzfeldt, Jochen  orcid-logo
Institut
Technische Logistik W-6  
TORE-DOI
10.15480/882.3208
TORE-URI
http://hdl.handle.net/11420/2190
Journal
Logistics journal / Referierte Veröffentlichungen  
Volume
2018
Citation
Logistics Journal : Proceedings (2018)
Publisher DOI
10.2195/lj_Proc_thiel_de_201811_01
Scopus ID
2-s2.0-85062171755
Publisher
WGTL
The reliable detection of objects in sensor data is a fundamental requirement for the autono-mization of logistic processes. Especially the recognition of objects in 3D sensor data is important for flexible autonomous applications. Deep learning represents the state of the art for object recognition in 2D image data. This article presents various current approaches to use deep learning for 3D object recognition. An essential feature of these approaches is the use of point clouds as input data, possibly after prior segmentation or conversion into voxel grids. Examples of applications in logistics are autonomous guided vehicles and order picking robots. The challenges for an application are a lack of training data, high computing requirements for real-time applications and an accuracy that is not yet sufficient. © 2018 Logistics Journal: Proceedings.
Subjects
Deep Learning
Autonome Systeme
3-D Objekterkennung
Punktwolke
DDC Class
620: Ingenieurwissenschaften
Publication version
publishedVersion
Lizenz
https://www.hbz-nrw.de/produkte/open-access/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004
Loading...
Thumbnail Image
Name

thiel_2018.pdf

Size

379.14 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback