TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Vorhersage des Ermüdungsfestigkeitsverhaltens von Stumpfstößen mittels Explainable Artificial Intelligence
 
Options

Vorhersage des Ermüdungsfestigkeitsverhaltens von Stumpfstößen mittels Explainable Artificial Intelligence

Publikationstyp
Conference Paper
Date Issued
2022
Sprache
German
Author(s)
Braun, Moritz  orcid-logo
Kellner, Leon  orcid-logo
Simon-Schultz, Maximilian  
Institut
Konstruktion und Festigkeit von Schiffen M-10  
TORE-URI
http://hdl.handle.net/11420/14701
Citation
48. Tagung des DVM-Arbeitskreises Betriebsfestigkeit (2022)
Contribution to Conference
48. Tagung des DVM-Arbeitskreises Betriebsfestigkeit 2022  
Publisher DOI
10.48447/BF-2022-002
Publisher
dvm-wissen
Butt joints are one of the most common welded joints in welded structures. It is well known that the fatigue behavior of such joints depends on many factors such as loading conditions, local weld geometry, etc., which often interact with each other; however these are difficult to quantify due to the statistical nature of the variables. Machine leaming algorithms can capture and interpret influential factors and their interactions For this purpose, the SHAPley Additive e Xplanations (SHAP) framework was used to explain the predictions. Additionally. anomaly detection methods were used to improve the robustness of the predictions.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback