TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Capping protein-controlled actin polymerization shapes lipid membranes
 
Options

Capping protein-controlled actin polymerization shapes lipid membranes

Citation Link: https://doi.org/10.15480/882.3681
Publikationstyp
Journal Article
Date Issued
2018-04-24
Sprache
English
Author(s)
Dürre, Katharina  
Keber, Felix C.  
Bleicher, Philip  
Brauns, Fridtjof  
Cyron, Christian J.  
Faix, Jan  
Bausch, Andreas R.  
TORE-DOI
10.15480/882.3681
TORE-URI
http://hdl.handle.net/11420/8941
Journal
Nature communications  
Volume
9
Issue
1
Article Number
1630
Citation
Nature Communications 9 (1): 1630 (2018-12)
Publisher DOI
10.1038/s41467-018-03918-1
Scopus ID
2-s2.0-85045946207
PubMed ID
29691404
Publisher
Nature Publishing Group UK
Arp2/3 complex-mediated actin assembly at cell membranes drives the formation of protrusions or endocytic vesicles. To identify the mechanism by which different membrane deformations can be achieved, we reconstitute the basic membrane deformation modes of inward and outward bending in a confined geometry by encapsulating a minimal set of cytoskeletal proteins into giant unilamellar vesicles. Formation of membrane protrusions is favoured at low capping protein (CP) concentrations, whereas the formation of negatively bent domains is promoted at high CP concentrations. Addition of non-muscle myosin II results in full fission events in the vesicle system. The different deformation modes are rationalized by simulations of the underlying transient nature of the reaction kinetics. The relevance of the regulatory mechanism is supported by CP overexpression in mouse melanoma B16-F1 cells and therefore demonstrates the importance of the quantitative understanding of microscopic kinetic balances to address the diverse functionality of the cytoskeleton.
DDC Class
600: Technik
More Funding Information
Die Forschung wurde unterstützt von der Deutschen Forschungsgemeinschaft über die SFB863 und FA330/11-1 (J.F.) und durch den ERC über das Projekt SelfOrg.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s41467-018-03918-1.pdf

Size

5.12 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback