TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Real-time trajectory control of an overhead crane using servo-constraints
 
Options

Real-time trajectory control of an overhead crane using servo-constraints

Publikationstyp
Journal Article
Date Issued
2018-01-01
Sprache
English
Author(s)
Otto, Svenja  orcid-logo
Seifried, Robert  orcid-logo
Institut
Mechanik und Meerestechnik M-13  
TORE-URI
http://hdl.handle.net/11420/3912
Journal
Multibody system dynamics  
Volume
42
Issue
1
Citation
Multibody System Dynamics 1 (42): (2018-01-01)
Publisher DOI
10.1007/s11044-017-9569-4
Scopus ID
2-s2.0-85015728303
In this paper, the system dynamics of an overhead crane are inverted by servo-constraints. The inversion provides a feedforward control for trajectory tracking of the system output. The overhead crane is inherently underactuated and modeled as a two-dimensional mechanical system with nonlinear system dynamics. Actuators are modeled as first-order systems to simplify implementation and account for velocity-controlled drives. The control based on servo-constraints is shown to be an effective method of trajectory control for overhead cranes. It will be demonstrated that the formulation is solvable in real-time using linear implicit Euler integration. The feedforward solution is made robust by an augmentation with LQR as well as a sliding mode controller. Experiments are conducted on a laboratory crane of 13 m motion range.
Subjects
Feedforward control
Overhead crane
Servo-constraints
Trajectory tracking
Underactuated systems
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback