Options
Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models
Citation Link: https://doi.org/10.15480/882.8327
Publikationstyp
Conference Paper
Date Issued
2023-03
Sprache
English
TORE-DOI
End Page
84
Article Number
85
Citation
26. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2023); 84-85
Scopus ID
Publisher
VDE Verglag GmbH
ISBN
978-3-8007-6066-4
978-3-8007-6065-7
Testing black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables Model-Based Testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. A decision tree model especially facilitates MBT for black-box systems if no system reset is possible. A case study on a discrete system illustrates our MBT approach.
Subjects
MLE@TUHH
DDC Class
600: Technology