TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models
 
Options

Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models

Citation Link: https://doi.org/10.15480/882.8327
Publikationstyp
Conference Paper
Date Issued
2023-03
Sprache
English
Author(s)
Plambeck, Swantje  orcid-logo
Eingebettete Systeme E-13  
Fey, Görschwin  orcid-logo
Eingebettete Systeme E-13  
TORE-DOI
10.15480/882.8327
TORE-URI
https://hdl.handle.net/11420/42884
End Page
84
Article Number
85
Citation
26. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2023); 84-85
Contribution to Conference
26. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV 2023  
Scopus ID
2-s2.0-85167446440
Publisher
VDE Verglag GmbH
ISBN
978-3-8007-6066-4
978-3-8007-6065-7
Testing black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables Model-Based Testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. A decision tree model especially facilitates MBT for black-box systems if no system reset is possible. A case study on a discrete system illustrates our MBT approach.
Subjects
MLE@TUHH
DDC Class
600: Technology
Funding(s)
Automatische Generierung von Modellen für Prädikation, Testen und Monitoring cyber-physischer Systeme  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback