Options
On the effects of the external surface on the equilibrium transport in zeolite crystals
Citation Link: https://doi.org/10.15480/882.1531
Publikationstyp
Journal Article
Date Issued
2010
Sprache
English
Author(s)
Institut
TORE-DOI
Volume
114
Issue
1
Start Page
300
End Page
310
Citation
The Journal of Physical Chemistry C, 2010, 114 (1), pp 300–310
Publisher DOI
Scopus ID
With the aid of molecular simulation techniques (molecular dynamics [MD], Grand-Canonical Monte Carlo [GCMC], and reactive flux correlation function [RFCF]), the influence of the external surface on the equilibrium permeation of methane and ethane into and out of an AFI-type zeolite crystal has been studied. In particular, “extended dynamically corrected transition state theory”, that has been proven to describe the transport of tracers in periodic crystals correctly, has been applied to surface problems. The results suggest that the molecules follow paths that are close to the pore wall in the interior, and also at the crystal surface. Moreover, the recrossing rate at the surface turns out to be non-negligible, yet, in contrast to the intracrystalline recrossing rate, remains almost constant over loading which gives indication to diffusive barrier crossing at the crystal surface. As a consequence of very different adsorption and desorption barriers, the corresponding permeabilities are shown to be not equal for one and the same condition (T , p). The critical crystal length, beyond which surface effects can be certainly neglected, is computed on basis of flux densities. Entrance/exit effects, in the present cases, are practically important solely for ethane at low pressures. The influence of the type of external surface on the surface flux is, hereby, rather small, because the transport at the surface is controlled by the slow supply from the gas phase. This has been evidenced by a simplified thermodynamic model that has been derived within this work and which is based on rapidly assessable simulation data. Finally, we propose a procedure for estimating the importance of different factors that have an impact on surface effects.
Subjects
molecular simulations
transport
hydrocarbons
zeolites
nanoporous materials
interface
DDC Class
620: Ingenieurwissenschaften
Loading...
Name
Zimmermann_JPhysChemC_2010_SI.pdf
Size
699.58 KB
Format
Adobe PDF
Loading...
Name
Zimmermann_JPhysChemC_2010.pdf
Size
1.63 MB
Format
Adobe PDF