TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Interaction of Nanoparticles and Surfactant in Controlling Foam Stability
 
Options

Interaction of Nanoparticles and Surfactant in Controlling Foam Stability

Publikationstyp
Conference Paper
Date Issued
2021-05
Sprache
English
Author(s)
Shojaei, Mohammad Javad  
Méheust, Yves  
Osman, Abdulkadir  
Grassia, Paul  
Shokri, Nima  
Institut
Geohydroinformatik B-9  
TORE-URI
http://hdl.handle.net/11420/10726
Citation
Interpore (2021)
Contribution to Conference
Interpore 2021, 13th Annual Meeting  
Stability of foam in the presence of hydrocarbons is a crucial factor in the success of its use in various applications in porous media, such as soil remediation and enhanced oil recovery. (EOR).In this study, we investigate the effect of surfactants with different charges (anionic, cationic, and non-ionic) on foam stability in the presence of charge-stabilized silica (SiO2) nanoparticles. Toward this aim, a comprehensive series of experiments on a Hele-Shaw cell and a foam column is conducted at bubble and bulk-scale respectively, that is, investigating phenomenologies of foam coarsening separately by gas diffusion and gravitational drainage. Our results show nanoparticles, despite their ability to position themselves at liquid-gas interfaces and thus limit the resulting surface tension coefficient, do not necessarily have a positive effect on foam stability; the nature and magnitude of this effect depends strongly on the nature of the surfactant, its concentration and the concentration of nanoparticles. Both results from bubble-scale and the bulk-scale experiments suggest that compatibility experiments are pre-requisite to foam stability analysis to test the compatibility between surfactants and nanoparticles.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback