TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior
 
Options

Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior

Publikationstyp
Journal Article
Date Issued
2019-06
Sprache
English
Author(s)
Kellner, Leon  orcid-logo
Stender, Merten  orcid-logo
von Bock und Polach, Rüdiger U. Franz  orcid-logo
Herrnring, Hauke  orcid-logo
Ehlers, Sören  
Hoffmann, Norbert  orcid-logo
Høyland, Knut V.  
Institut
Strukturdynamik M-14  
Konstruktion und Festigkeit von Schiffen M-10  
TORE-URI
http://hdl.handle.net/11420/2365
Journal
Cold regions science and technology  
Volume
162
Start Page
56
End Page
73
Citation
Cold Regions Science and Technology (162): 56-73 (2019-06)
Publisher DOI
10.1016/j.coldregions.2019.02.007
Scopus ID
2-s2.0-85063941026
ArXiv ID
1812.03994v2
Ice material models often limit the accuracy of ice related simulations. The reasons for this are manifold, e.g. complex ice properties. One issue is linking experimental data to ice material modeling, where the aim is to identify patterns in the data that can be used by the models. However, numerous parameters that influence ice behavior lead to large, high dimensional data sets which are often fragmented. Handling the data manually becomes impractical. Machine learning and statistical tools are applied to identify how parameters, such as temperature, influence peak stress and ice behavior. To enable the analysis, a common and small scale experimental database is established.
Subjects
Physics - Data Analysis; Statistics and Probability
MLE@TUHH
DDC Class
530: Physics
Funding(s)
Impact of SEA Ice Loads on Global Dynamics of Offshore Wind Turbines  
Räumliche und zeitliche Lastschwankungen bei Eis-Struktur Interaktionen im Großmaßstab  
More Funding Information
DFG: EH485/1–1, Bundesministerium für Wirtschaft und Energie 0324022B
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback