TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Deep generative models for unsupervised anomaly detection in magnetic resonance imaging of the brain
 
Options

Deep generative models for unsupervised anomaly detection in magnetic resonance imaging of the brain

Citation Link: https://doi.org/10.15480/882.16421
Publikationstyp
Doctoral Thesis
Date Issued
2026
Sprache
English
Author(s)
Behrendt, Finn Tobias  
Advisor
Schlaefer, Alexander  
Referee
Heinrich, Mattias Paul
Title Granting Institution
Technische Universität Hamburg
Place of Title Granting Institution
Hamburg
Examination Date
2025-12-04
Institute
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.16421
TORE-URI
https://hdl.handle.net/11420/60688
Citation
Technische Universität Hamburg (2025)
This thesis explores unsupervised anomaly detection in magnetic resonance imaging of the brain, leveraging generative models to model the distribution of healthy anatomy and identify deviations as anomalies. We examine the integration of additional contextual information into generative models and anomaly scoring methods. Our approaches enhance reconstruction quality and anomaly detection accuracy.
Subjects
Unsupervised Anomaly Detection
Deep Generative Models
Brain MRI
Diffusion Models
Deep Learning
DDC Class
616.07: Pathology
006.31: Machine Learning
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Behrendt_Finn_Deep-Generative-Models-for-Unsupervised-Anomaly-Detection-in-Magnetic-Resonance-Imaging-of-the-Brain.pdf

Size

19.62 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback