TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Effect Analysis of Low-Level Hardware Faults on Neural Networks using Emulated Inference
 
Options

Effect Analysis of Low-Level Hardware Faults on Neural Networks using Emulated Inference

Publikationstyp
Conference Paper
Date Issued
2021-07-05
Sprache
English
Author(s)
Bahnsen, Fin Hendrik  
Klebe, Vanessa  
Fey, Görschwin  orcid-logo
Institut
Eingebettete Systeme E-13  
TORE-URI
http://hdl.handle.net/11420/10134
Article Number
9493350
Citation
International Conference on Modern Circuits and Systems Technologies (MOCAST 2021)
Contribution to Conference
10th International Conference on Modern Circuits and Systems Technologies, MOCAST 2021  
Publisher DOI
10.1109/MOCAST52088.2021.9493350
Scopus ID
2-s2.0-85112151410
Artificial Neural Networks (ANN) are increasingly deployed in various applications and devices using hardware accelerators. However, faults in the processing hardware can affect the output of the ANN and, thus, the reliability of the application using it. Analyzing the effect of hardware faults on the application at design time is essential but non-trivial. We introduce a framework to emulate ANN inference on hardware resource descriptions under hardware faults. Hardware architecture, scheduling, and fault models are fully adaptable. An in-depth controlled experiment shows how hardware faults jeopardize any robustness guar-antees. Benchmark experiments on state-of-the-art ANN demonstrate the scalability of our framework.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback