TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Adaptive grey-box models for model predictive building control using the unscented Kalman filter
 
Options

Adaptive grey-box models for model predictive building control using the unscented Kalman filter

Publikationstyp
Conference Paper
Date Issued
2021-05
Sprache
English
Author(s)
Freund, Svenne  
Schmitz, Gerhard  
Tiemann, Claus Markus  
Herausgeber*innen
Purdue University  
Institut
Technische Thermodynamik M-21  
TORE-URI
http://hdl.handle.net/11420/10272
Article Number
363
Citation
6th International High Performance Buildings Conference: 363 (2021)
Contribution to Conference
6th International High Performance Buildings Conference, 2021  
Publisher Link
https://docs.lib.purdue.edu/ihpbc/363
Publisher
Purdue University Libraries
Model predictive control (MPC) for buildings is a promising approach to reduce the energy consumption of buildings while at the same time the thermal user comfort can be improved. The core of this control strategy consists of building models that can describe the thermal behavior of particular zones accurately. Grey-box models are frequently used modeling approaches for control-oriented models, however, these models often have limitations regarding their general applicability. Furthermore, the modeling and identification of models used in MPC still require significant effort and is one of the main obstacles for the actual practical implementation of building predictive control. This paper addresses these issues and presents a framework for the online state and parameter estimation of grey-box models. The results show that (1) this online simultaneous state and parameter estimation highly increases the multi-steps-ahead (up to 48 h) prediction performance, (2) this approach enables the models to adapt to changing environmental conditions and (3) it is possible to use only one pre-defined initial model to describe the thermal behavior of several different zones.
DDC Class
530: Physik
600: Technik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize