TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Data-driven Radar Processing Using a Parametric Convolutional Neural Network for Human Activity Classification
 
Options

Data-driven Radar Processing Using a Parametric Convolutional Neural Network for Human Activity Classification

Publikationstyp
Journal Article
Date Issued
2021-09-01
Sprache
English
Author(s)
Stadelmayer, Thomas  
Santra, Avik  
Weigel, Robert  
Lurz, Fabian  
Institut
Hochfrequenztechnik E-3  
TORE-URI
http://hdl.handle.net/11420/10340
Journal
IEEE sensors journal  
Volume
21
Issue
17
Start Page
19529
End Page
19540
Article Number
9464267
Citation
IEEE Sensors Journal 21 (17): 19529-19540 (2021-09-01)
Publisher DOI
10.1109/JSEN.2021.3092002
Scopus ID
2-s2.0-85113234205
Peer Reviewed
true
The paper proposes a data-driven pre-processing optimization for radar data using a parametric convolutional neural network. The proposed method is applied on human activity classification as a use case. Present radar-based activity recognition system exploit micro-Doppler signature by generating Doppler spectrograms or a temporal series of range-Doppler maps, followed by deep neural networks or machine learning approaches for classification. Those radar data representations are typically generated on the basis of short-time Fourier transformations. A Fourier transformation equally resolves the frequency space, which may be sub-optimal in some applications. Although deep convolutional neural networks (DCNN) have been shown to implicitly learn features from raw sensor data in other fields, such as speech recognition, yet, for the case of radar-based DCNNs, pre-processing is required to develop a scalable and robust classification or regression application. In this paper, we propose a parametric convolutional neural network that mimics the radar pre-processing across fast-time and slow-time radar data through 2D sinc filter or 2D wavelet filter kernels to extract features for classification of various human activities. During training only the filter parameters of the 2D sinc filters or 2D wavelets are learned, leading to optimized feature representation for the classification task. It is demonstrated that our proposed solution shows improved results compared to equivalent DCNN architectures that rely on Doppler spectrograms or radar data cubes as input data.
Subjects
2D Sinc Filters
2D Wavelets
Chirp
Deep Learning
Doppler effect
Doppler radar
Feature extraction
Human Activity Classification
Parametric CNN
Radar
Sensors
Spectrogram
MLE@TUHH
DDC Class
600: Technik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback