TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. The Information-Geometric Perspective of Compositional Data Analysis
 
Options

The Information-Geometric Perspective of Compositional Data Analysis

Publikationstyp
Book Part
Date Issued
2021-06-02
Sprache
English
Author(s)
Erb, Ionas  
Ay, Nihat 
Institut
Data Science Foundations E-21  
TORE-URI
http://hdl.handle.net/11420/10379
Start Page
21
End Page
43
Citation
In: Advances in Compositional Data Analysis, Springer, Cham: 21-43 (2021)
Publisher DOI
10.1007/978-3-030-71175-7_2
Information geometry uses the formal tools of differential geometry to describe the space of probability distributions as a Riemannian manifold with an additional dual structure. The formal equivalence of compositional data with discrete probability distributions makes it possible to apply the same description to the sample space of Compositional Data Analysis (CoDA). The latter has been formally described as a Euclidean space with an orthonormal basis featuring components that are suitable combinations of the original parts. In contrast to the Euclidean metric, the information-geometric description singles out the Fisher information metric as the only one keeping the manifold’s geometric structure invariant under equivalent representations of the underlying random variables. Well-known concepts that are valid in Euclidean coordinates, e.g., the Pythagorean theorem, are generalized by information geometry to corresponding notions that hold for more general coordinates. In briefly reviewing Euclidean CoDA and, in more detail, the information-geometric approach, we show how the latter justifies the use of distance measures and divergences that so far have received little attention in CoDA as they do not fit the Euclidean geometry favored by current thinking. We also show how Shannon entropy and relative entropy can describe amalgamations in a simple way, while Aitchison distance requires the use of geometric means to obtain more succinct relationships. We proceed to prove the information monotonicity property for Aitchison distance. We close with some thoughts about new directions in CoDA where the rich structure that is provided by information geometry could be exploited.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback