Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3812
DC FieldValueLanguage
dc.contributor.authorNeidhardt, Maximilian-
dc.contributor.authorOhlsen, Jakob-
dc.contributor.authorHoffmann, Norbert-
dc.contributor.authorSchlaefer, Alexander-
dc.date.accessioned2021-10-12T06:50:08Z-
dc.date.available2021-10-12T06:50:08Z-
dc.date.issued2021-08-01-
dc.identifier.citationCurrent Directions in Biomedical Engineering 7 (1): 20211108, 35-38 (2021-08-01)de_DE
dc.identifier.issn2364-5504de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10456-
dc.description.abstractElasticity of soft tissue is a valuable information to physicians in treatment and diagnosis of diseases. The elastic properties of tissue can be estimated with ultrasound (US) shear wave imaging (SWEI). In US-SWEI, a force push is applied inside the tissue and the resulting shear wave is detected by high-frequency imaging. The properties of the wave such as the shear wave velocity can be mapped to tissue elasticity. Commonly, wave features are extracted by tracking the peak of the shear wave, estimating the phase velocity or with machine learning methods. To tune and test these methods, often simulation data is employed since material properties and excitation can be accurately controlled. Subsequent validation on real US-SWEI data is in many cases performed on tissue phantoms such as gelatine. Clearly, validation performance of these procedures is dependent on the accuracy of the simulated tissue phantom and a thorough comparison of simulation and experimental data is needed. In this work, we estimate wave parameters from 400 US-SWEI data sets acquired in various homogeneous gelatine phantoms. We tune a linear material model to these parameters. We report an absolute percentage error for the shear wave velocity between simulation and phantom experiment of <2.5%. We validate our material model on unknown gelatine concentrations and estimate the shear wave velocity with an error <3.4% for in-range concentrations indicating that our material model is in good agreement with US-SWEI measurements.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherDe Gruyterde_DE
dc.relation.ispartofCurrent directions in biomedical engineeringde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectAbaqusde_DE
dc.subjectHigh-Frequency US Imagingde_DE
dc.subjectShear Wave Elastographyde_DE
dc.subjectShear Wave Simulationde_DE
dc.subjectUltrasoundde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc610: Medizinde_DE
dc.titleParameter identification for ultrasound shear wave elastography simulationde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3812-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0146869-
tuhh.oai.showtruede_DE
tuhh.abstract.englishElasticity of soft tissue is a valuable information to physicians in treatment and diagnosis of diseases. The elastic properties of tissue can be estimated with ultrasound (US) shear wave imaging (SWEI). In US-SWEI, a force push is applied inside the tissue and the resulting shear wave is detected by high-frequency imaging. The properties of the wave such as the shear wave velocity can be mapped to tissue elasticity. Commonly, wave features are extracted by tracking the peak of the shear wave, estimating the phase velocity or with machine learning methods. To tune and test these methods, often simulation data is employed since material properties and excitation can be accurately controlled. Subsequent validation on real US-SWEI data is in many cases performed on tissue phantoms such as gelatine. Clearly, validation performance of these procedures is dependent on the accuracy of the simulated tissue phantom and a thorough comparison of simulation and experimental data is needed. In this work, we estimate wave parameters from 400 US-SWEI data sets acquired in various homogeneous gelatine phantoms. We tune a linear material model to these parameters. We report an absolute percentage error for the shear wave velocity between simulation and phantom experiment of <2.5%. We validate our material model on unknown gelatine concentrations and estimate the shear wave velocity with an error <3.4% for in-range concentrations indicating that our material model is in good agreement with US-SWEI measurements.de_DE
tuhh.publisher.doi10.1515/cdbme-2021-1008-
tuhh.publication.instituteMedizintechnische und Intelligente Systeme E-1de_DE
tuhh.publication.instituteStrukturdynamik M-14de_DE
tuhh.identifier.doi10.15480/882.3812-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume7de_DE
tuhh.container.startpage35de_DE
tuhh.container.endpage38de_DE
dc.relation.projectMechatronisch geführte Mikronavigation von Nadeln in Weichgewebede_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85114393352de_DE
tuhh.container.articlenumber20211108de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThis work was partially funded by the TUHH i3 initiative.de_DE
item.creatorOrcidNeidhardt, Maximilian-
item.creatorOrcidOhlsen, Jakob-
item.creatorOrcidHoffmann, Norbert-
item.creatorOrcidSchlaefer, Alexander-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.creatorGNDNeidhardt, Maximilian-
item.creatorGNDOhlsen, Jakob-
item.creatorGNDHoffmann, Norbert-
item.creatorGNDSchlaefer, Alexander-
item.grantfulltextopen-
item.mappedtypeArticle-
item.openairetypeArticle-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoSCHL 1844/2-2-
crisitem.author.deptMedizintechnische und Intelligente Systeme E-1-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.deptMedizintechnische und Intelligente Systeme E-1-
crisitem.author.orcid0000-0002-5107-0864-
crisitem.author.orcid0000-0002-9648-0218-
crisitem.author.orcid0000-0003-2074-3170-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
10.1515_cdbme-2021-1008.pdfVerlags-PDF1,28 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

32
checked on Oct 21, 2021

Download(s)

7
checked on Oct 21, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons