Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3851
Publisher DOI: 10.1002/adom.202100323
Title: Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C
Language: English
Authors: Krekeler, Tobias 
Rout, Surya Snata 
Krishnamurthy, Gnanavel Vaidhyanathan 
Störmer, Michael 
Arya, Mahima 
Ganguly, Ankita 
Sutherland, Duncan S. 
Bozhevolnyi, Sergey 
Ritter, Martin  
Pedersen, Kjeld 
Petrov, Alexander  
Eich, Manfred 
Chirumamilla, Manohar 
Keywords: high-temperature stability; photonics; plasmonics; thin films; titanium nitride
Issue Date: 29-May-2021
Publisher: Wiley-VCH
Source: Advanced Optical Materials 9 (16): 2100323 (2021-08-18)
Abstract (english): 
Titanium nitride (TiN) has emerged as one of the most promising refractory materials for plasmonic and photonic applications at high temperatures due to its prominent optical properties along with mechanical and thermal stability. From a high temperature standpoint, TiN is a substitution for Au and Ag in the visible to near-infrared wavelength range, with potential applications including thermophotovoltaics, thermoplasmonics, hot-electron and high temperature reflective coatings. However, the optical properties and thermal stability of TiN films strongly depend on the growth conditions, such as temperature, partial pressure of the reactive ion gas, ion energy, and substrate orientation. In this work, epitaxial TiN films are grown at 835 °C on an Al2O3 substrate using a radio frequency sputtering method. The oxidization behavior of TiN is investigated at 1000 °C under a medium vacuum condition of 2 × 10–3 mbar, which is relevant for practical technical applications, and the thermal stability at 1400 °C under a high vacuum condition of 2 × 10–6 mbar. The TiN film structure shows an unprecedented structural stability at 1000 °C for a minimum duration of 2 h under a medium vacuum condition, and an exceptional thermal stability at 1400 °C, for 8 h under a high vacuum condition, without any protective coating layer. The work reveals, for the first time to the authors’ knowledge, that the TiN film structure with columnar grains exhibits remarkable thermal stability at 1400 °C due to low-index interfaces and twin boundaries. These findings unlock the fundamental understanding of the TiN material at extreme temperatures and demonstrate a key step towards fabricating thermally stable photonic/plasmonic devices for harsh environments.
URI: http://hdl.handle.net/11420/10489
DOI: 10.15480/882.3851
ISSN: 2195-1071
Journal: Advanced optical materials 
Institute: Betriebseinheit Elektronenmikroskopie M-26 
Optische und Elektronische Materialien E-12 
Document Type: Article
Project: SFB 986: Teilprojekt C01 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik 
SFB 986: Teilprojekt C07 - Deposition und Stabilität von hochtemperaturfesten geschichteten Metamaterialien 
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen 
Projekt DEAL 
License: CC BY-NC 4.0 (Attribution-NonCommercial) CC BY-NC 4.0 (Attribution-NonCommercial)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
adom.202100323.pdfVerlagsversion2,52 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

88
Last Week
0
Last month
19
checked on Feb 2, 2023

Download(s)

116
checked on Feb 2, 2023

SCOPUSTM   
Citations

6
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons