TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Deep learning for guidewire detection in intravascular ultrasound images
 
Options

Deep learning for guidewire detection in intravascular ultrasound images

Citation Link: https://doi.org/10.15480/882.3826
Publikationstyp
Journal Article
Date Issued
2021-08-01
Sprache
English
Author(s)
Bargsten, Lennart 
Klisch, Daniel  
Riedl, Katharina Alina  
Wissel, Tobias  
Brunner, Fabian J.  
Schaefers, Klaus  
Graß, Michael  
Blankenberg, Stefan  
Seiffert, Moritz  
Schlaefer, Alexander  
Institut
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.3826
TORE-URI
http://hdl.handle.net/11420/10495
Journal
Current directions in biomedical engineering  
Volume
7
Issue
1
Start Page
106
End Page
110
Article Number
20211125
Citation
Current Directions in Biomedical Engineering 7 (1): 20211125 (2021-08-01)
Publisher DOI
10.1515/cdbme-2021-1023
Scopus ID
2-s2.0-85114408031
Publisher
De Gruyter
Algorithms for automated analysis of intravascular ultrasound (IVUS) images can be disturbed by guidewires, which are often encountered when treating bifurcations in percutaneous coronary interventions. Detecting guidewires in advance can therefore help avoiding potential errors. This task is not trivial, since guidewires appear rather small compared to other relevant objects in IVUS images. We employed CNNs with additional multi-task learning as well as different guidewire-specific regularizations to enable and improve guidewire detection. In this context, we developed a network block which generates heatmaps that highlight guidewires without the need of localization annotations. The guidewire detection results reach values of 0.931 in terms of the F1-score and 0.996 in terms of area under curve (AUC). Comparing thresholded guidewire heatmaps with ground truth segmentation masks leads to a Dice score of 23.1 % and an average Hausdorff distance of 1.45 mm. Guidewire detection has proven to be a task that CNNs can handle quite well. Employing multi-task learning and guidewire-specific regularizations further improve detection results and enable generation of heatmaps that indicate the position of guidewires without actual labels.
Subjects
Coronary artery
Heatmap
Multi-task learning
Regularization
Segmentation
Vessel
DDC Class
600: Technik
610: Medizin
Funding(s)
MALEKA: Maschinelle Lernverfahren für die kardiovaskuläre Bildgebung auf der Grundlage des Programms für Innovation (PROFI) - Modul PROFI Transfer Plus  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

10.1515_cdbme-2021-1023.pdf

Size

1.29 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback