DC FieldValueLanguage
dc.contributor.authorSpeck, Robert-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorEmmett, Matthew-
dc.contributor.authorMinion, Michael-
dc.contributor.authorBolten, Matthias-
dc.contributor.authorKrause, Rolf-
dc.date.accessioned2021-10-14T10:28:52Z-
dc.date.available2021-10-14T10:28:52Z-
dc.date.issued2015-09-30-
dc.identifier.citationBIT Numerical Mathematics 55 (3): 843-867 (2015-09-30)de_DE
dc.identifier.issn0006-3835de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10527-
dc.description.abstractThe spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.en
dc.language.isoende_DE
dc.relation.ispartofBIT Numerical Mathematicsde_DE
dc.subjectFAS correctionde_DE
dc.subjectMulti-level spectral deferred correctionsde_DE
dc.subjectPFASSTde_DE
dc.subjectSpectral deferred correctionsde_DE
dc.titleA multi-level spectral deferred correction methodde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishThe spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.de_DE
tuhh.publisher.doi10.1007/s10543-014-0517-x-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume55de_DE
tuhh.container.startpage843de_DE
tuhh.container.endpage867de_DE
dc.identifier.scopus2-s2.0-84942768082de_DE
local.publisher.peerreviewedtruede_DE
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidSpeck, Robert-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidEmmett, Matthew-
item.creatorOrcidMinion, Michael-
item.creatorOrcidBolten, Matthias-
item.creatorOrcidKrause, Rolf-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.creatorGNDSpeck, Robert-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDEmmett, Matthew-
item.creatorGNDMinion, Michael-
item.creatorGNDBolten, Matthias-
item.creatorGNDKrause, Rolf-
item.languageiso639-1en-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-3879-1210-
crisitem.author.orcid0000-0003-1904-2473-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

13
Last Week
0
Last month
0
checked on Dec 5, 2021

SCOPUSTM   
Citations

37
Last Week
0
Last month
checked on Nov 30, 2021

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.