Publisher DOI: 10.1175/2010JAS3269.1
Title: Modulation of internal gravity waves in a multiscale model for deep convection on mesoscales
Language: English
Authors: Ruprecht, Daniel  
Klein, Rupert 
Majda, Andrew J. 
Keywords: Convection;Gravity waves;Interenal waves;Mesoscale processes;Moisture
Issue Date: 1-Aug-2010
Source: Journal of the Atmospheric Sciences 67 (8): 2504-2519 (2010-08-01)
Journal: Journal of the atmospheric sciences 
Abstract (english): 
Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy.Atwo-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up-and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv)moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime. © 2010 American Meteorological Society.
URI: http://hdl.handle.net/11420/10530
ISSN: 0022-4928
Document Type: Article
Peer Reviewed: Yes
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

8
checked on Oct 18, 2021

SCOPUSTM   
Citations

7
checked on Oct 14, 2021

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.