TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Hierarchical matrix preconditioners for the Oseen equations
 
Options

Hierarchical matrix preconditioners for the Oseen equations

Publikationstyp
Journal Article
Date Issued
2007-02-06
Sprache
English
Author(s)
Le Borne, Sabine  orcid-logo
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/10604
Journal
Computing and visualization in science  
Volume
11
Issue
3
Start Page
147
End Page
157
Citation
Computing and Visualization in Science 11 (3): 147-157 (2008-05-01)
Publisher DOI
10.1007/s00791-007-0065-x
Scopus ID
2-s2.0-42449088179
Hierarchical matrices provide a technique for the data-sparse approximation and matrix arithmetic of large, fully populated matrices. In particular, approximate inverses as well as approximate LU factorizations of finite element stiffness matrices may be computed and stored in nearly optimal complexity. In this paper, we develop efficient ℋ-matrix preconditioners for the Oseen equations. In particular, H-matrices will provide efficient preconditioners for the auxiliary (scalar) discrete convection-diffusion and pressure Schur complement problems. We will provide various numerical tests comparing the resulting preconditioners with each other. © 2007 Springer-Verlag.
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback