TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Targeted delivery of fertilizer in coarse textured soils using foam as carrier
 
Options

Targeted delivery of fertilizer in coarse textured soils using foam as carrier

Publikationstyp
Conference Paper
Date Issued
2021-05
Sprache
English
Author(s)
Shojaei, Mohammad Javad  
Or, Dani  
Shokri, Nima  
Institut
Geohydroinformatik B-9  
TORE-URI
http://hdl.handle.net/11420/10727
Citation
Interpore (2021)
Contribution to Conference
Interpore 2021, 13th Annual Meeting  
Agrochemicals and fertilizers are central to modern agriculture and are credited with the large increase of crop yield as part of the Green Revolution of the 1960’s. Timely and targeted fertilizer application is an important component for reducing costs and minimizing unintended release to the environment and water resource pollution. The efficiency of highly mobile fertilizers (i.e., nitrate) is affected by drainage and preferential flow pathways that bypass root bearing soil volumes. We report a novel liquid fertilizer delivery method using foam as carrier. The highly controlled transport of foam (defined as a dispersion of gas in a continuous liquid phase) in coarse soils (most susceptible to unstable flows) offers a means for targeted delivery to desired root zone volumes at concentrations and floe geometry that minimizes losses and promote its uptake. As proof of concept we conducted transport experiments in cylindrical soil columns using foam and conventional fertilizer application. Our results show that foam-assisted fertilizer application decreased the leaching of fertilizer and improved its retention in the soil column potentially offering a vehicle for fertilizer delivery in soil.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback