Verlagslink DOI: 10.1016/j.camwa.2019.06.007
Titel: Nonlinear diffusion, boundary layers and nonsmoothness: Analysis of challenges in drift–diffusion semiconductor simulations
Sprache: Englisch
Autor/Autorin: Farrell, Patricio 
Peschka, Dirk 
Schlagwörter: Convergence order; Finite element method; Finite volume method; Nonlinear diffusion and diffusion enhancement; Scharfetter–Gummel scheme; Van Roosbroeck system for semiconductors
Erscheinungs­datum: 15-Dez-2019
Quellenangabe: Computers and Mathematics with Applications 78 (12): 3731-3747 (2019-12-15)
Zusammenfassung (englisch): 
We study different discretizations of the van Roosbroeck system for charge transport in bulk semiconductor devices that can handle nonlinear diffusion. Three common challenges corrupting the precision of numerical solutions will be discussed: boundary layers, discontinuities in the doping profile, and corner singularities in L-shaped domains. We analyze and benchmark the error and the convergence order of finite difference, finite-element as well as advanced Scharfetter–Gummel type finite-volume discretization schemes. The most problematic of these challenges are boundary layers in the quasi-Fermi potentials near ohmic contacts, which can have a drastic impact on the convergence order. Using a novel formal asymptotic expansion, our theoretical analysis reveals that these boundary layers are logarithmic and significantly shorter than the Debye length.
URI: http://hdl.handle.net/11420/10848
ISSN: 0898-1221
Zeitschrift: Computers and mathematics with applications 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

44
Letzte Woche
0
Letzten Monat
checked on 06.10.2022

SCOPUSTM   
Zitate

2
Letzte Woche
0
Letzten Monat
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.